

Stage III Luminal BC in BRCA mutated patient who did not reach pCR : Olaparib or cdk4/6 inhibitor ?

Olaparib : C. Duhem - CHL

Cdk4/6 Inhibitor : H Denys -UGent

Stage III Luminal BC in BRCA mutated patient who did not reach pCR : Olaparib or cdk4/6 inhibitor ?

<u>Stage III</u> Luminal BC in <u>BRCA</u> mutated patient who did <u>not reach pCR</u> : Olaparib or cdk4/6 inhibitor ?

Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up

Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up

Early breast cancer: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up

LOIBL S et al Ann Oncol 2024

In a High Risk gBRCA mut Pt Would you prefer to give:

A targeted Tt improving IDFS <u>AND</u> OS in a biomarker selected population (ESCAT I-A) tackling the vulnerability of cancer cells

<u>Or</u>

An other Tt improving IDFS only in unselected population

...(potentially) less effective in this subgroup ?

St III Luminal BC in BRCA Mutated Pt who did not reach pCR

BREAST CANCER DEBATE OF THE YEAR 2023

Integration of new agents in the landscape of available (Neo)Adjuvant treatments for high risk Pts

Controversies about the way to combine/sequence/ choose the best option(s)

✓ Unlikely that new clinical trials will answer these questions

✓ Recommendations → through indirect evidences , extrapolation from the advanced setting etc...

1) Population

2) Efficacity - Sensitivity to treatment

3) Toxicity - Compliance

4) Cost-effectiveness

No restriction for nodal involvement or CPS+ EG sore

High Risk gBRCA mutant RH + Breast cancer

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

High Risk gBRCA mutant RH + Breast cancer

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

ORIGINAL ARTICLE

Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in *BRCA1/2* and high-risk, early breast cancer

Geyer C et al , Ann Oncol 2022

In MonarchE : Distant met. = 71 % of Invasive relapses

ORIGINAL ARTICLE

Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in *BRCA1/2* and high-risk, early breast cancer

Geyer C et al , Ann Oncol 2022

SECOND OVERALL SURVIVAL INTERIM ANALYSIS

MonarchE : 4 published updates NATALEE : ??? (PALLAS & Penelope B...)

Tomer Meirson • Daniel A Goldstein • Bishal Gyawali • Ian F Tannock 🖂

THE LANCET Oncology June 2023

If High Risk gBRCA mutant RH + Breast cancer → prefer Olaparib : ↗ Efficacity data

✤ Targeted therapy →biomarker defined population at poor prognosis

- Δ IDFS at 4 y : > in OLYMPIA , early separation of the curves (13 Pt treated to avoid 1 relapse at 4y)
- Convincing OS data in OLYMPIA ↔ not (yet) in monarchE (NATALEE)

Same Benefit if HR + and HR- population

- Lack of mechanistic rationale for ≠ synthetic lethal effect of PARPis
- Clinical data by subgroups
 - \checkmark Advanced setting : OLYMPIAD & EMBRACA \leftrightarrow similar PFS benefit
 - Early setting : OLYMPIA & Gepar-OLA (Neo adjuvant)

Tutt A, NEJM 2021, Geyer C Ann Oncol 2022, Robson M , NEJM 2017, Litton J , NEJM 2018, Fasching PA, Ann Oncol 2021

ORIGINAL ARTICLE

Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in *BRCA1/2* and high-risk, early breast cancer

Geyer C et al , Ann Oncol 2022

SUBGROUP ANALYSIS DDFS

ORIGINAL ARTICLE

Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in *BRCA1/2* and high-risk, early breast cancer

Geyer C et al , Ann Oncol 2022

SUBGROUP ANALYSIS OF OS

If High Risk gBRCA mutant RH + Breast cancer \rightarrow relative resistance to cdk4/6is ?

- No direct evidence (pivotal ph III , Meta analysis,..) → gBRCA mut = specific subgroup ?
- ctDNA exploratory analysis on ML series André F et al , Ann Oncol 2023 \rightarrow Unconvaincing for BRCA 1/2

If High Risk gBRCA mutant RH + Breast cancer \rightarrow relative resistance to cdk4/6is ?

- No direct evidence (pivotal ph III , Meta analysis,..) → gBRCA mut = specific subgroup ?
- ctDNA exploratory analysis on ML series André F et al , Ann Oncol 2023 \rightarrow Unconvaincing for BRCA 1/2
- Subgroup analyses from RWE → worse outcome of gBRCA mutated Pts in 1L advanced setting (retrospective data)

Author	Results/Conclusions					
Frenel et al.	BRCA/PALB2 mutated patients with shorter PFS (14.3 vs. 26.7m)					
Collins et al.	BRCA mutated patients with shorter OS (26 vs. 51m)					
Bruno et al.	BRCA/CHECK/ATM mutated patients with worse outcomes					
Safonov et al.	BRCA2 mutations with worse PFS					
Fuentes Antras, et al.	BRCA1/2 and PALB2 mutations with shorter PFS (9.9 vs. 26.8m)					
Frenel J, et al. Ann Oncol 2 Bruno L, et al. JCO Precision Oncol, 2 Safanov A, et al. Cancor Res 2	020. Collins J, et al. Oncol Therapy, 022. 2021. Fuentes Antras J, et al. 022. ASCO 2023.					

	Somatic alterations
gBRCA2	Rb1 loss
gBRCA1(2)	MYC Ampl(53 %)*
	Xu et al , 2020

Molecular Alterations associated with response to Abemaciclib in MonarchE

DECEMBER 5-9, 2023

Molecular Alterations associated with response to Abemaciclib in MonarchE

Turner N, SABCS 2023

DECEMBER 5-9, 2023

		Abemaciclib + ET	ET Alone	A	bema+ET ET alor	e
Pr	revalence	Events/	n (%)	HR (95% CI)	Interactio	on p-value
All patients		123/580 (22%)	169/593 (28%)	0.72(0.57,0.91)	-	
PIK3CA mut	38%	55/217 (26%)	73/229 (32%)	0.75(0.53,1.1)		
PIK3CA wt		68/363 (18%)	96/364 (26%)	0.70(0.51,0.95)	-	0.758
TP53 mut/homde	I 32%	55/189 (30%)	82/184 (44%)	0.60(0.42,0.84)		
TP53 wt		68/391 (18%)	87/409 (22%)	0.81(0.59,1.1)		0.184
CCND1 amp	20%	36/113 (32%)	42/129 (32%)	0.94(0.6,1.5)	-	
CCND1 wt		87/467 (18%)	127/464 (28%)	0.66(0.5,0.87)		0.177
ZNF703 amp	16%	28/96 (30%)	37/100 (36%)	0.77(0.47,1.3)		
ZNF703 wt		95/484 (20%)	132/493 (26%)	0.71(0.54,0.92)	+	0.776
MYC amp	16%	34/92 (36%)	25/84 (30%)	1.30(0.77,2.2)	1	-
MYC wt		89/488 (18%)	144/509 (28%)	0.62(0.47,0.8)		0.014
FGFR1 amp	16%	26/88 (30%)	35/98 (36%)	0.80(0.48,1.3)		
FGFR1 wt		97/492 (20%)	134/495 (28%)	0.70(0.54,0.91)	-	0.641
GATA3 mut	14%	13/73 (18%)	17/88 (20%)	0.86(0.42,1.8)		
GATA3 wt		110/507 (22%)	152/505 (30%)	0.69(0.54,0.89)		0.513

0.01 0.5 1 1.5 2

..."Therefore, among ER-positive patients treated with adjuvant therapy or advanced therapy, CDK4/6 inhibitors <u>may be ineffective</u> for those with BRCA2 germline mutations. PARP inhibitors can be used as the <u>first choice</u> for these patients".

If High Risk gBRCA mutant RH + Breast cancer : prefer Olaparib ? Toxicity + Compliance issues : Side effects and Duration

If High Risk gBRCA mutant RH + Breast cancer : prefer Olaparib ? Toxicity + Compliance issues : Side effects and Duration

Better Tolerance to Olaparib ? ↔ Better Compliance ?

No majoration of TVE events

Discontinuation rate for AEs

- 9,9 % in Olaparib arm (vs 4,2 % in placebo arm)
 - 18,5 % in MonarchE (open label Trial)

If High Risk gBRCA mutant RH + Breast cancer : prefer Olaparib ? Toxicity + Compliance issues : Side effects and Duration

Better Tolerance to Olaparib ? \leftrightarrow Better Compliance ?

No majoration of TVE events

Discontinuation rate for AEs

- 9,9 % in Olaparib arm (vs 4,2 % in placebo arm)
- 18,5 % in MonarchE (open label Trial)
 - → 6,5% : both Abema + ET vs 1,1% Stopped ET in control arm

Numerical \of second maligancies 1,5 vs 2,5 %

Chemopreventive effect ?

If High Risk gBRCA mutant RH + Breast cancer : prefer Olaparib ? Toxicity + Compliance issues : Side effects and <u>Duration</u>

Longer duration of Adjuvant Tt = Factor for lower adherence (If Aes , monitoring ,...)

Desire for pregnancy

✓ In POSITIVE trial \rightarrow 52 % St II-III, inclusion after <u>18 To 30 mo</u> of ET

✓ Young gBRCA Pts : ↘ Fertility, RRSO ,...

✓ Ovarian toxicity of cdk4/6is ? Scavone G et al , Cancers 2023

Olaparib: more debated FDA ressources 2022, Winship AT et al , Hum Reprod 2020

Costs

If High Risk gBRCA mutant RH + Breast cancer : prefer Olaparib ? Cost Effectiveness

Network Upen	Jan 3d- 2024	Breast Cancer: Targets and Therapy	Feb 16th-2023 Dovepress
Original Investigation Oncology Cost-Effectiveness of Adjuvant Olaparib for Patients With and Germline BRCA1/2 Mutations Christina M. Zettler, MPH; Dilanka L. De Silva, MD; Victoria S. Blinder, MD; Mark E. Robson, MD; Elena B. Elkin, PhD, MPA	Breast Cancer	Ocst-Effectiveness of All Cancer Patients: One Si Patients' Needs? Elisabeth M Jongbloed ¹ , Hedwig M Blommestein Saskia M Wilting ⁽¹⁾ , Carin A Uyl-de Groot ² , Ag	ORIGINAL RESEARCH Demaciclib in Early Breast ze Fits All or Tailoring to
<u>Ccl</u> : Adjuvant <u>olaparib</u> <u>was a cost-e</u> or patients with high-risk, early-stag	ffective option ge breast cancer	<u>Ccl</u> : The addition of a endocrine therapy in all patients is no	<u>bemaciclib</u> to adjuvant high-risk ER+, HER2- EB t cost-effective.
and a germline BRCA1/2 mu	itation.		

Combination with CPIs : Feasible with Olaparib not feasible with cdk4/6is

St III Luminal BC in gBRCA Pt non pCR : <u>OLAPARIB</u> or Cdk4/6 i ?

In favor of Olaparib

1) Population

- 2) Efficacity Sensitivity to treatment
- 3) Toxicity Compliance
- 4) Cost-effectiveness

- Targeted treatment in high risk Pts
- More effective (IDFS , early signal for OS)
- Cdk4/6 less effective in this population
- > To combine to ET ! Combinable with IOs...
- Better compliance , Shorter Tt, Fertility friendly
- Cost effective approach
- > The Choice in ESMO guidelines, St Gallen Consensus,...
- ≻

St III Luminal BC in gBRCA Pt non pCR : <u>OLAPARIB</u> or Cdk4/6 i ?

St III Luminal BC in BRCA Mut.Pt non pCR : OLAPARIB or Cdk4/6 i Remaining debate ?

St III Luminal BC in BRCA Mut.Pt non pCR : OLAPARIB or Cdk4/6 i Remaining debate ?

St III Luminal BC in BRCA Mut.Pt non pCR : OLAPARIB \rightarrow Cdk4/6 i

St III Luminal BC in BRCA Mut.Pt non pCR : OLAPARIB \rightarrow Cdk4/6 i

Stage III Luminal BC in BRCA mutated patient who did not reach pCR : Olaparib !

Breast cancer debate

Hannelore Denys

- **Consulting or Advisory Role:** Pfizer (Inst), Roche (Inst), PharmaMar (Inst), AstraZeneca (Inst), Eli Lilly (Inst), Novartis (Inst), Amgen (Inst), GSK (Inst), Seagen (Inst), MSD (Inst), Gilead (Inst)
- Travel, Accommodations: Pfizer (Inst), Roche (Inst), PharmaMar (Inst), Teva (Inst), AstraZeneca (Inst), MSD (Inst), Gilead (Inst), GSK (Inst)

NSE F

Stage III BC: high risk patients

- stage 3A breast (4-9+LN)
- T0 N2 M0
- T1 N2 M0
- T2 N2 M0
- T3 N1 M0
- T3 N2 M0
- Stage 3B (>5cm with 1-3 +LN, Skin or chest wall invasion)
- T4 N0 M0
- T4 N1 M0
- T4 N2 M0
- Stage 3C :
- Any T N3 M0 (>10+ LN, LN collar bone)

EBCTCG --- 20-year risk after stopping endocrine therapy at 5 years

Hazard of Recurrence over 25 Years:

IBCSG Trials I to V

testing chemo-endocrine therapies, premenopausal (I,II,V) & postmenopausal (III,IV,V)

Stage and tumor burden are important indicators of distant recurrence (46% to 57%)

Strategies to improve prognosis

Ðı		PALLAS (N=5760) Palbociclib	PENELOPE-B (N=1250) Palbociclib	monarchE (N=5637) Abemaciclib	NATALEE (N=5101) Ribociclib
	Population median age	Pre/postmeno, men 52 yr	Pre/postmeno 49 yr	Pre/postmeno, men 51 yr	Pre/postmeno, men
	Stage IIA / IIB / III	18% / 33% / 49%	(No pCR after NACT; CPS-EG≥3; or 2 & ypN+)	12% / 14% / 74%	IIA, IIB, III (limited ~40% II)
	Primary endpoint met	No	No	Yes	Yes

Mayer et al 2021; Loibl et al 2021, Johnston et al 2022, Slamon D et al ASCO 2023

• PARPi for gBRCA: OlympiA

Adjuvant CDK4/6i

Study population

monarchE

NATALEE

Ribociclib 3 yr NSAI +/- OFS Ribociclib 400 mg po QD 21 days on/ 7 days off NSAI +/- OFS N2 N1 N0 and Grade 3 N0 and Grade 2 and Ki-67 > 20% or high genomic score

~30% pts early-stage tumors eligible for NATALEE and not MonarchE

NSAI = Non-Steroidal Aromatase Inhibitor; OFS = Ovarian Function Suppression

Johnston S et al ESMO 2023; Slamon D et al ASCO 2023

AJCC anatomical staging ¹	TN (M0)	NATALEE ^{2,3}	monarchE ⁴
Stage IA	T1N0		
Stage IB	T0N1mi		
	T1N1mi		G3 or Ki67 <u>></u> 20%
Stage IIA	T0N1		
	T1N1		G3 or Ki67 <u>></u> 20%
	T2N0	G3, or G2 with Ki-67 ≥ 20% or high genomic risk ^c	
Stage IIB	T2N1		G3 or Ki67 <u>></u> 20%
	T3N0		
Stage IIIA	T0N2		
	T1N2		
	T2N2		
	T3N1		
	T3N2		
Stage IIIB	T4N0		
	T4N1		
	T4N2		
Stage IIIC	Any TN3		

Adjuvant CDK4/6i in HR+ EBC

monarchE

Harbeck N ESMO 2023

Overall Survival

monarchE

Fewer Patients with Metastatic Disease in the Abemaciclib Arm

¹Harbeck* N, Rastogi* P, et al. Ann Oncol. 2021;32(12):1571-1581 *co-first authors

²Johnston SRD, et al. Lancet Oncol. 2023;24:77-90

Overall Survival

NATALEE 100 -90 -80 -70 Overall survival, % 60 50 40 **RIB + NSAI NSAI** alone 30 Events/n (%) 84/2549 (3.3) 88/2552 (3.4) 20 -96.1 3-Year OS rate, % 97.0 10 -0.892 (0.661-1.203) Hazard ratio (95% CI) 0 12 18 24 30 36 42 48 54 0 6 Months No. at risk RIB + NSAI 2549 24 31 2405 2337 2305 2259 1902 1259 455 0 444 2552 2302 2256 2209 2158 1815 1207 NSAI alone 0

Immature, fewer than 4% of events in both treatment arms

CDK4/6i and stage III EBC

monarchE

Consistent IDFS Benefit Observed in Selected Subgroups*

	Abemaciclib + ET		ET	г	- Favors Abemaciclib + ET Favors ET alone -	\rightarrow	
	No.	Events	No.	Events		HR (95% CI)	Interaction p-value
Overall	2808	407	2829	585	⊢◆-1	0.680 (0.599, 0.772)	
Pooled Age Group 1 <65 years ≥65 years	2371 437	325 82	2416 413	485 100		0.658 (0.571, 0.757) 0.797 (0.595, 1.067)	0.229
IWRS Menopausal Status Premenopausal Postmenopausal	1221 1587	150 257	1232 1597	237 348		0.597 (0.487, 0.733) 0.746 (0.635, 0.876)	0.095
IWRS Prior Treatment Neoadjuvant chemotherapy Adjuvant chemotherapy	1039 1642	202 183	1048 1647	297 260		0.649 (0.543, 0.776) 0.694 (0.574, 0.838)	0.596
Baseline ECOG PS 0 1	2405 401	337 70	2369 455	489 95		0.654 (0.569, 0.751) 0.869 (0.638, 1.184)	0.097
Primary Tumor Size <20 mm ≥20 mm but <50 mm ≥50 mm	781 1371 607	82 214 102	767 1419 610	150 284 144		0.517 (0.395, 0.677) 0.771 (0.646, 0.920) 0.676 (0.525, 0.871)	0.053
Number of positive lymph nod 1-3 4-9 10 or more	les 1118 1107 575	136 142 127	1142 1126 554	182 231 172		0.750 (0.601, 0.937) 0.614 (0.498, 0.757) 0.661 (0.526, 0.832)	0.438
Tumor Grade G1 - Favorable G2 - Mod Favorable	209 1377	24 181	216 1395	35 268		0.698 (0.415, 1.174) 0.665 (0.551, 0.803)	0.769
Tumor Stage Stage II Stage III	716 2078	79 326	740 2077	106 476		0.764 (0.571, 1.022) 0.661 (0.574, 0.761)	0.382
Tamoxifen Aromatase Inhibitor	857 1931	111 293	898 1887	196 386		0.561 (0.445, 0.708) 0.738 (0.634, 0.859)	
					0.5 1 2		

° ESVO

*Region of enrollment and Progesterone status data not shown Content of this presentation is copyright and responsibility of the author. Permission is required for re-use

NATALEE

iDFS by Anatomical Stage Stage III Stage II 100 100 90 90 % * 80 -80 al. surviv 70 70 60 -60 Median follow-up: 33.1 mo Median follow-up: 38.6 mo 50 · 50 NSAI alone **RIB + NSAI** RIB + NSAI NSAI alone dise 40 40 -170/1528 (11.1) 203/1512 (13.4) Events/n (%) 30 Events/n (%) 55/1011 (5.44) 80/1034 (7.74) 30 2 20 3-Year iDFS rate, % 94.2 20 3-Year iDFS rate, % 88.1 92.6 10 Hazard ratio (95% CI) Hazard ratio (95% CI) 0.755 (0.616-0.926) 0.700 (0.496-0.986)

48 54

36 42

30

841 840 611 609 194 203 15 18 0

12

902 924 883 893 859 872

6

929 948

1011

1034

No. at risk

RIB + NSAI

NSAI alone

18 24

Months

The risk of invasive disease was reduced by 30.0% for stage II and by 24.5% for stage III disease with ribociclib plus NSAI vs NSAI alone

No. at risk

12

6

 RIB + NSAI
 1528
 1411
 1362
 1312
 1232

 NSAI alone
 1512
 1289
 1241
 1183
 1099

18 24 30

Months

844 753 496 456

36 42

174 151

83.8

54

48

Conclusion CDK4/6i in EBC

- Consistent and substantial treatment benefits with CDK4/6 inhibitors in adjuvant setting
- OS data are immature

Molecular subtype

Consistent abemaciclib treatment benefit across all intrinsic molecular subtypes

	Abema	ciclib + ET	ET A	lone	Aber	na+ET ET Alone
	Events/n (%)	4-yr IDFS Rate (95% CI)	Events/n (%) 4-	yr IDFS Rate (95% 0	CI) HR (95% CI)	
ITT	407/2808 (14%)	86.0 (84.7-87.3)	585/2829 (21%)	80.0 (78.5-81.6)	0.68 (0.60, 0.77)	+
Biomarker Subset	138/605 (23%)	77.4 (74.1-80.9)	182/585 (31%)	69.8 (66.1-73.7)	0.70 (0.56, 0.88)	+
LumA	28/230 (12%)	87.5 (83.2-92)	45/228 (20%)	81.4 (76.3-86.8)	0.59 (0.37, 0.95)	
LumB	65/265 (25%)	76.3 (71.2-81.7)	88/262 (34%)	66.6 (61.1-72.7)	0.70 (0.51, 0.97)	-
HER2E	32/69 (46%)	52.6 (41.8-66.2)	34/59 (58%)	42.5 (31.4-57.5)	0.74 (0.46, 1.2)	
Basal	9/21 (43%)	57.1 (39.5-82.8)	8/15 (53%)	46.7 (27.2-80.2)	0.75 (0.29, 1.9)	
		Interaction p-	value (all subtype	es) = 0.621	0.01	0.5 1 1.5 2

- The selected biomarker subset is enriched for IDFS events using case-cohort design
- IDFS rates are presented as indicative of relative prognosis across subtypes but do not inform the actúal risk of recurrence within each subtype because of IDFS enrichment

LumA = luminal A, LumB = luminal B, HER2E = Human Epidermal Growth Factor Receptor 2 - Enriched

Biomarker analysis

Prevalence oncogenic mutations and copy number variation

TCGA BRCA WES cohort: T0,1,2; Primary; ER+ HER2- cases; n=411

- Overall similar prevalence of biomarker alterations in monarchE and TCGA cohorts
- Oncogenic mutations and copy number alterations (≥ 9%) were selected for the predictive biomarker analysis

Oncogenic = Known activating or loss-of-function variants Higher prevalence rates observed in TP53, NF1, and RB1

9% prevalence was used to reach 80% statistical power for each predictive biomarker for the respective DNA biomarker sample size

monarchE

Consistent treatment benefit across most prevalent genomic alterations

		Abemaciclib + ET	ET Alone	Ab	ema+ET ET alon	e	
Prev	valence	Events/	n (%)	HR (95% CI)	Interactio	n p-value	
All patients		123/580 (22%)	169/593 (28%)	0.72(0.57,0.91)			MUT = mutation
PIK3CA mut	38%	55/217 (26%)	73/229 (32%)	0.75(0.53,1.1)		0.750	HOMDEL = homozygous deletion
PIK3CA wt		68/363 (18%)	96/364 (26%)	0.70(0.51,0.95)		0.758	
TP53 mut/homdel	32%	55/189 (30%)	82/184 (44%)	0.60(0.42,0.84)		0.404	AMP = amplification
TP53 wt		68/391 (18%)	87/409 (22%)	0.81(0.59,1.1)		0.184	
CCND1 amp	20%	36/113 (32%)	42/129 (32%)	0.94(0.6,1.5)		0.477	
CCND1 wt		87/467 (18%)	127/464 (28%)	0.66(0.5,0.87)		0.177	
ZNF703 amp	16%	28/96 (30%)	37/100 (36%)	0.77(0.47,1.3)		0.770	
ZNF703 wt		95/484 (20%)	132/493 (26%)	0 71(0 54 0 92)		0.776	
MYC amp	16%	34/92 (36%)	25/84 (30%)	1.30(0.77,2.2)			
MYC wt		89/488 (18%)	144/509 (28%)	0.62(0.47,0.8)		0.014	MYC, GATA3, FGFR1, ZNF703: analyses
FGFR1 amp	16%	26/88 (30%)	35/98 (36%)	0.80(0.48,1.3)		0.044	limited by small sample size
FGFR1 wt		97/492 (20%)	134/495 (28%)	0.70(0.54,0.91)		0.641	
GATA3 mut	14%	13/73 (18%)	17/88 (20%)	0.86(0.42,1.8)		0.540	
GATA3 wt		110/507 (22%)	152/505 (30%)	0.69(0.54,0.89)		0.513	
				0.0	1 0.5 1 1.5 2		

MYC amplifications were associated with diminished benefit in this exploratory analysis

No data on BRCAm and abemacyclib in monarchE

No prospective data on CDK4/6i in gBRCA EBC

Lets look in MBC

CDK4/6i in gBRCA MBC

- Mostly retrospective
- Subgroup analyses
- Small sample size of BRCAm patients

Author	Results/Conclusions	
Frenel et al.	BRCA/PALB2 mutated patients with shorter PFS (14.3 vs. 26.7m)	PADA trial 1017 pts, 16 BRCA2m, 1 BRCA1m
Collins et al.	BRCA mutated patients with shorter OS (26 vs. 51m)	Retrospective Flatiron database , 2968 pts, 85 BRCAN
Bruno et al.	BRCA/CHECK/ATM mutated patients with worse outcomes	Retrospective , 217 pts, 10 BRCA2m, mPFS 10,2m vs 15.6m in wt
Safonov et al.	BRCA2 mutations with worse PFS	Retrospective 2242 pts, 81 BRCA2m
Fuentes Antras, et al.	BRCA1/2 and PALB2 mutations with shorter PFS (9.9 vs. 26.8m)	Retrospective, 153 pts, 21pat BRCA/PalB2m

BRCAm patients treated with CDK4/6i: Mechanisms for potential worse outcome?

Resistance to CDK4/6i is heterogenous

- Cell cycle machinery
 - RB1, CCNE1/2, CDK6, p16, INK4, FAT1
- Growth factor signaling
 - FGFR, HER2, RAS/MAPK pathway, PTEN
- Epigenetic
 - Basal subtype, loss of ER/PR expression
- Microenvironment
 - Interferon signaling

This presentation is the intellectual property of Ariella Hanker. Contact her at ariella.hanker@UTsouthwestern.edu for permission to reprint and/or distribute.

Loss of Rb drives resistance to CDK4/6i

Approximately 10% of patients that progress on CDK4/6 inhibitors acquire loss-of-function *RB1* mutations

O'Leary B, et al. 2018. PMID: 30206110

Rb1 alterations enriched in gBRCA2 carriers

Germline-somatic gene enrichment

n= 4,640 patients

Rb1 LOH associated with worse outcome on CDK4/6i

Nicholas Turner and Ben O'Leary

gBRCA2: worse PFS on CDK4/6i

gBRCA2 30

WT 507 353 238 176 142 104 80 58

1st line CDK4/6i+ET

Time (mo)

Rb1 and BRCA2 are co-located on Chromosome 13q

wt RB1 allele vulnerable to on-treatment mutations

Hypothesis for worse outcome of BRCAm patients treated with CDK4/6i?

Interesting data for the role of Rb1 in BRCA2m MBC

No data in EBC

Prospective trials of CDK4/6i in gBRCA patients?

HOPE: Olaparib, Palbociclib and Fulvestrant in Patients With BRCA Mutation-associated, HR+, HER2-metastatic Breast Cancer ClinicalTrials.gov ID NCT03685331

Trials in EBC?

Adjuvant PARPi

OlympiA: adjuvant olaparib for gBRCA1/2

Tutt et al. N Engl J Med. 2021;384(25):2394-2405, Tung N npj Breast Cancer 2022: 8(47)

2023 ASCO ANNUAL MEETING #ASCO23 PRESENTED BY: Heather Han, MD Presentation is property of the author and ASCO. Permission required for reuse; contact permissions@usco.org

98.0 100 95.0 92.8 89.8 96.9 92.8 89.1 80 86.4 Difference: 3 Yr. OS rate Difference: 4 Yr. OS rate Overall survival (%) 3.8% (95% CI: 0.9%, 6.6%) 3.4% (95% CI: -0.1%, 6.8%) 60 Olaparib (75 deaths, 70 due to breast cancer) 40 Placebo (109 deaths, 103 due to breast cancer) 20 Stratified hazard ratio 0.68 (98.5% CI: 0.47, 0.97); P = 0.009 crossing the significance boundary of 0.015 0 0 6 12 18 24 30 36 42 48 54 No. at risk Time since randomisation (months) 437 Olaparib 921 862 844 809 773 672 560 335 228 868 752 647 423 333 218 915 843 808 530 Placebo

<u>Are PARPi indicated for ER+ gBRCAm EBC?</u>

SUBGROUP ANALYSIS OF OS

All subgroup hazard ratio point estimates are < 1 and confidence intervals include the hazard ratio for olaparib treatment effect in the overall ITT population

We urgently need more data in ER+ gBRCAm EBC

Conclusion:

Olaparib and abemaciclib approved for high risk HR+ gBRCA

Significant questions remain for:

• **Abemaciclib:** - can biomarkers identify patients most likely to (or not) benefit? C-myc? RB1?

- prospective data in gBRCA patients are lacking
- longer FU for OS

• **Olaparib**: limited data in HR+ gBRCA

Patient selection will be the key to more success

- Dynamic biomarker changes?
- Small short-term neoadjuvant trials to predict successful therapies? (eg ADAPTLate, POETIC A, ..)

- Biomarker driven
- DFS benefit
- **OS benefit** (also for ER+?)
- 1y Olaparib
- Costs
- Safety
- Adherence

Costs

- Safety
- Adherence

- Biomarker driven
- DFS benefit
- **OS benefit** (also for ER+?)
- 1y Olaparib
- Costs
- Safety
- Adherence